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Test suite minimization techniques try to remove redundant test cases of a test suite. However, reducing
the size of a test suite might reduce its ability to reveal faults. In this paper, we present a novel approach
for test suite reduction that uses an additional testing criterion to break the ties in the minimization pro-
cess. We integrated the proposed approach with two existing algorithms and conducted experiments for
evaluation. The experiment results show that our approach can improve the fault detection effectiveness
of reduced suites with a negligible increase in the size of the suites. Besides, under specific conditions, the
proposed approach can also accelerate the process of minimization.
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1. Introduction

As software develops and evolves, new test cases are continually
generated to validate the latest modifications. As a result, the sizes
of test suites grow over time. However, a percentage of test cases in
a test suite may become redundant, because the requirements exe-
cuted by one test case may also be validated by others. Due to the
constraints on time and resources, it may be impossible to rerun
all the test cases whenever the software is modified. Therefore, it
is desirable to keep test suite sizes manageable by removing redun-
dant test cases. This process is called test suite minimization (also
known as test suite reduction). The problem of finding a minimal
size subset from an unminimized test suite to satisfy the same
requirements is called the test suite minimization problem [10]. A
classical greedy heuristic [4,16] solves this problem by repeating
the following two steps: (1) pick the test case which meets the most
requirements (random-selection if multiple candidates exist), and
(2) remove the requirements covered by the selected test case. They
stop when all requirements are satisfied. Another heuristic devel-
oped by Harrold et al. [10] selects a representative set of test cases
from a test suite, but it may take considerable computing effort in
the recursion of the selecting process.

A potential drawback of existing minimization approaches is
that they may significantly decrease the fault detecting capability.
In the literature, there exist some conflicts among research related
ll rights reserved.
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to test suite minimization. Wong et al. [17,32] reported that while
the all-uses coverage was kept constant, test suites could be mini-
mized at little or no cost to their fault detection effectiveness. Later,
Rothermel et al. [6,23] argued that the fault detection capabilities of
test suites could be severely compromised by minimization. Intui-
tively, a test suite which includes more test cases may have a better
opportunity to reveal faults. Jeffrey and Gupta [5,20] proposed an
approach to test suite reduction which attempts to selectively keep
redundant test cases, with the goal of decreasing the loss of fault
detection effectiveness. However, the redundancy increases the
overhead of maintaining and reusing test suites.

Considering test suite minimization, it may be helpful to pick
the test cases that are likely to expose faults instead of including
more test cases in the reduced suite. Besides, the computing time
of the minimization process may become an issue when the
number of test cases and requirements grow. A tie occurs if two
or more test cases have the same importance. In this paper, we
present a new technique for test suite reduction called reduction
with tie-breaking (RTB), which uses additional criterion to break
the ties during the minimization process. According to previous
studies about the effectiveness of testing coverage criteria [5,28],
we believe that our approach can improve the fault-revealing capa-
bility of the reduced suites. We integrated our approach with two
existing algorithms, and conducted experiments with the Siemens
suite programs [28] and the Space program to evaluate and com-
pare the results with prior experimental studies [5,6,23].

The remainder of this paper is organized as follows. In Section 2,
we review the test suite reduction problem, the existing solutions,
and the empirical studies. The implementation of the proposed ap-
proach and the decision process of applying our technique are de-
scribed in Section 3. Section 4 presents experiments that compare
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existing test suite minimization techniques with our approach.
Finally, the conclusion and future work are given in Section 5.

2. Test suite reduction

In this section, we review the definition of the test suite reduc-
tion problem, the existing solutions, and the empirical studies for
this problem.

2.1. Background and definition

Software is tested with test cases. However, running all of the
test cases in a test suite may take a great deal of effort. According
to Rothermel et al. [7], one system of about 20,000 lines of code re-
quires seven weeks to run all its test cases. Therefore, eliminating
redundant test cases from test suites is desirable. The test suite
minimization problem [10] can be formally stated as follows. Given:
Table 1
An example of the coverage information of test cases in a test suite.

r1 r2 r3 r4 r5 r6 r7 r8

t1 � � �
t2 � � � �
t3 � � �
t4 � � �
t5 � � � �

Fig. 1. The HGS algorithm propose
(1) A test suite T of test cases {t1, t2, t3,. . ., tk}.
(2) A set of testing requirements {r1, r2, r3,. . ., rn} that must be

satisfied to provide the desired testing coverage of the
program.

(3) Subsets {T1, T2, T3,. . ., Tn} of T, one associated with each of the
ris, such that any one of the test cases tjs belonging to Ti sat-
isfies ri.

Problem: find a minimal cardinality subset of T that is capable of
exercising all ris exercised by the unminimized test suite T.

Table 1 is an example that shows the coverage information of
test cases in a test suite {t1, t2, t3, t4, t5}. The symbol � means sat-
isfaction of a requirement by a test case. Here we find that a subset
{t1, t2, t4} of the suite is enough to cover all the requirements {r1, r2,
r3, r4, r5, r6, r7, r8}, while test cases t2 and t5 become redundant since
the requirements covered by them are satisfied by the other three
test cases. The test suite minimization problem is NP-Complete be-
cause the minimum set-covering problem [3,4] can be reduced to
this problem in polynomial time. Thus, heuristic solutions for this
problem are important.

2.2. The existing solutions

In this subsection, we first introduce the two algorithms that
will be modified and evaluated in our experiments. Then we de-
scribe other solutions and related works.
d by Harrold, Gupta and Soffa.



Table 2
An example of 1-to-1 redundancy.

r1 r2 r3 r4 r5

t1 � � �
t2 � �
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2.2.1. The HGS algorithm
Fig. 1 shows the HGS algorithm presented by Harrold et al. [10].

This heuristic accepts the associating testing sets Ti for each
requirement, and finds a representative set that covers all require-
ments. It first considers the Tis of a single element (cardinality one),
then places test cases that belong to these Ti into the representative
set and marks all Tis as being selected. Next, the Ti of cardinality
two are considered. The test case that occurs the most times
among all Tis of cardinality two is added into the representative
set, and all unmarked Tis containing the test case are marked. This
process is repeated until the Tis of maximum cardinality are exam-
ined. When examining the Tis of cardinality m, there may be a tie,
because several test cases occur the most among all Tis of that size.
Under the above conditions, the test case that occurs in the most
unmarked Tis of cardinality (m + 1) is chosen. If a decision still can-
not be made, the Tis with increasing cardinality are recursively
examined, and finally a random choice is made. This algorithm
can provide significant saving in test suite size [6,23], but the
recursive function calls of the minimization process may take con-
siderable computing effort.

2.2.2. The GRE algorithm
Fig. 2 shows the GRE algorithm presented by Chen and Lau

[13,15]. In their opinion, there are two special kinds of test cases
in a test suite: the essential test cases and the 1-to-1 redundant test
cases. A test case is regarded as essential if there exists a require-
ment which is only covered by the test case. In contrast to the con-
cept of essentials, a test case ti is said to be 1-to-1 redundant if there
exists a test case tj such that the set of requirements covered by ti is a
subset of the set of requirements covered by tj. For example, Table 2
shows that t2 is 1-to-1 redundant because the requirements of set
Fig. 2. The GRE algorithm proposed by Chen and Lau.
{r1,r4} is the subset of {r1,r2,r4}, which is covered by t1. The GRE heu-
ristic alternatively applies the following three strategies until all
requirements are satisfied: (1) the essentials strategy—to select all
essential test cases, (2) the 1-to-1 redundancy strategy—to remove
1-to-1 redundant test cases, and (3) the greedy strategy—to select
test cases that meet the maximum number of unsatisfied require-
ments. It is noticed that the greedy strategy is applied if and only
if both the essentials strategy and the 1-to-1 redundancy strategy
cannot be applied. If the greedy strategy has not been applied, GRE
guarantees to deliver an optimal representative set with respect to
the minimization problem [13,15]. But in general, for the GRE and
HGS, it is hard to tell which one is superior to the other [8,14]. We
therefore adapted both algorithms.

2.2.3. Other related works
The classical greedy heuristic for a set-covering problem [4,16]

can be applied to the test suite minimization problem. Von Ronne
[33] generalized the HGS algorithm, such that every requirement
could be satisfied multiple times according to its hitting-factor.
Inspiring by the concept analysis framework, Tallam and Gupta
[31] developed another heuristic called the delayed-greedy strategy.
Concept analysis is a hierarchical clustering technique for objects
and their corresponding attributes. When viewing test cases as ob-
jects and requirements as attributes, the framework can help ex-
pose both the implications among test cases and the implications
among those requirements satisfied by the test cases. In their
experiments, the delayed-greedy strategy consistently obtained
the same or more reduction in suite sizes than it did in prior heu-
ristics, such as in the HGS or in the classical greedy strategy. Black
et al. [24] expressed the test suite minimization problem as a bin-
ary integer linear programming (ILP) problem. They provided a bi-
criteria binary ILP model that considers two objectives simulta-
neously: minimizing a test suite with regard to a particular level
of coverage and maximizing the error detection rates. However,
to apply their approach, the prior knowledge of fault detection
capability for each test case must be maintained.

Modified condition/decision coverage (MC/DC) is a stricter form
of decision (or branch) coverage. To satisfy the criterion for a con-
dition of a decision, a MC/DC pair needs to be covered. By consid-
ering the complexity of the criterion, Jones and Harrold [9]
described two techniques for test suite reduction: build-up and
break-down. The two techniques are tailed for use with MC/DC,
and provide a trade-off between effectiveness of reduction and
execution time. Genetic algorithms that simulate the mechanism
of natural evolution are usually used to find exact or approximate
solutions for optimization or searching problems [1]. The algo-
rithms include the concepts of evolutionary biology such as inher-
itance, mutation and crossover. Based on an integer programming
problem formulation and the control flow graphs of programs,
Mansour and El-Fakih [11] adapted a hybrid genetic algorithm to
the test suite reduction problem. Recently, Zhong et al. [8] pre-
sented an experimental study of four typical test suite reduction
techniques, including the HGS, the GRE, the genetic-based ap-
proach proposed by Mansour and El-Fakih, and the ILP-based ap-
proach proposed by Black et al. The main concerns of their study
are: (1) execution time, (2) the sizes of the reduced suites, and
(3) whether or not the reduced suites produced by different tech-
niques have many test cases in common. They also have provided a



Table 3
The branch coverage information for T.

BT
1 BF

1 BT
2 BF

2 BT
3 BF

3 BT
4 BT

4

t1 � � � �
t2 � � � �
t3 � � �
t4 � � �
t5 � � �
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guideline for choosing the appropriate technique. However, they
did not address the issue of fault detection capability.

Apart from test suite minimization, another attractive topic is re-
lated to test case prioritization. In contrast to the minimization tech-
niques that attempt to remove test cases from a suite, the
prioritization techniques [7,19] focus on how to recognize the
ordering of a suite for early fault detections. In the late study of
Li et al. [18], the effectiveness of several algorithms, including gree-
dy and genetic ones for test case prioritization, were empirically
investigated. Because the criteria studied were based on code cover-
age, their findings could be applied to the test suite reduction prob-
lem as well.

2.3. The effect on fault detection capability

A number of empirical studies using existing minimization
techniques have been reported. Wong et al. used the ATACMIN tool
to minimize the test suites that were not coverage adequate
[17,25,32]. Their work shows that when the coverage is kept con-
stant, the size of a test set can be reduced at little or no expense to
its fault detection effectiveness. In contrast, the empirical studies
conducted in Rothermel et al. [6,23] suggest that reducing test
suites can severely compromise the fault detection capabilities of
the suites. For test suite filtration and prioritization, Leon and Pod-
gurski [21] compared the coverage-based techniques, such as that
of the classical greedy technique with the distribution-based one,
which analyzes the distribution of the execution profiles of test
cases. The results indicate that both approaches are complemen-
tary in the sense that they find different defects. Harder et al.
[27] presented a technique for minimizing test suites by consider-
ing the operational abstraction. An operational abstraction is a for-
mal mathematical description of the actual behavior of a program.
The test case which changed the operational abstraction was re-
tained. The test suites minimized by their technique had better
fault detection than the suites reduced by maintaining branch cov-
erage, but were substantially larger.

Coverage criteria (such as branch coverage and all-uses cover-
age) are used to assess the adequacy of test suites. Some empirical
studies on the effectiveness of testing criteria have been performed
[12,28,29]. In experiments by Hutchins et al. [28], the tests based
on controlflow and dataflow criteria have been frequently comple-
mentary in their effectiveness. Recently, Jeffrey and Gupta [5,20]
suggested that multiple testing criteria can be used to effectively
identify test cases that are likely to expose different faults in soft-
ware. Their approach (called the RSR technique hereafter) for test
suite minimization improves the fault detection effectiveness of
the reduced suite, but selectively adds redundancy to the suite.
Fig. 3. A simple program and the b
Sampath et al. [30] presented three strategies, including the tie-
breaker concept, for integrating customized usage-based test
requirements with traditional test requirements to increase the
effectiveness of reduced test suites. However, it should be noted
that their approaches are specific to web application testing.

In practice, a software system often contains several hundreds
of subprograms. A large number of requirements and test cases
may be involved. As a result, the time consumed in the minimiza-
tion process may become an important issue. To our knowledge,
most of prior techniques for improving the fault-revealing capabil-
ities of reduced suites actually increase the sizes of the suites.
Although the execution time of different reduction techniques
has been compared, the way to accelerate minimization process
has not been addressed.

3. RTB: reduction with tie-breaking

In this section, we first provide an example that motivates the
proposed RTB approach. Next, we will describe how to integrate
RTB with two existing algorithms, HGS and GRE, respectively.

3.1. A motivational example

Fig. 3 shows a simple program and the corresponding branch
coverage adequate test suite T. This program accepts three integers
and returns a value. The branch coverage information of T is shown
in Table 3. We first illustrate how to minimize T with the HGS algo-
rithm, namely, by selecting a representative set that covers all the
branches of the program. Initially, the branches BT

4 and BF
4 are to

be uniquely covered by test cases t2 and t1, respectively. Therefore,
we place these two test cases into the representative set, and mark
the branches met by them, i.e., BT

1, BF
1, BT

2, BF
2, BT

3, BT
4, and BF

4. Now, only
branch BF

3 is unsatisfied, and test cases t3, t4, and t5 are candidates for
covering BF

3. For example, if test case t3 is randomly selected, then
the reduced suite generated by the HGS algorithm is {t1, t2, t3}. It
is noticed in this example that test case t5, which exposes a di-
vide-by-zero error at line 15, is eliminated from T. In addition, when
ranch coverage adequate suite.



Table 4
The definition-use coverage information for T.

a(1,B1) b(1,B2) c(1,B3) c(1,15) x(3,9) x(5,9) y(7,B4) y(7,15) y(9,B4) y(9,15)

t1 � � � � �
t2 � � � �
t3 � � � � �
t4 � � � � �
t5 � � � � � �
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applying the GRE algorithm to T, because t3, t4, and t5 are equally
important under the greedy strategy, an arbitrarily choice from them
is still necessary and the test case which reveals fault, i.e., t5, may be
removed. However, when considering the definition-use pair cover-
age information of T shown in Table 4, test case t5 is more important
than t3 and t4 since it contains the most definition-use pairs. There-
fore, in this example, t5 is picked from {t3, t4, t5} and the tie is further
broken by another coverage criterion. Notice that the reduced suite
{t1, t2, t5} exposes the divide-by-zero error at line 15 now.

Fig. 4 provides a decision process that helps project managers
determine whether it is suitable to adopt RTB. In software testing,
the corresponding data such as test suites, requirements, and cov-
erage information are collected. People may take multiple coverage
criteria into consideration when doing software testing. Therefore,
when doing test suite reduction, if the selected algorithm makes
random choices in the minimization process, and if the other cov-
erage information helps to distinguish test cases, we can then ap-
ply RTB to the selected algorithm.

3.2. Implementation

In HGS or traditional greedy algorithms, random selection will
be adopted whenever more than one test case has the same impor-
tance with respect to the coverage criterion for minimization.
However, the random elimination may exclude the test cases
which are more likely to detect faults than in the preserved ones.
The RSR technique improves the fault detection effectiveness by
adding redundancy, which impairs its reducing ability. In fact,
the evaluation of software testing efficiency usually takes into ac-
count more than one criterion. Thus, in addition to the primary cri-
terion, the importance of these candidates could be further
evaluated by another coverage criterion, denoted by the secondary
criterion. We can break the ties in the minimization process by
selecting the test case which contributes the most coverage with
respect to the secondary criterion. That is, the fault detection effec-
tiveness can be enhanced by using a refined way to select test
cases, rather than by adding redundancies.

All test suite minimization techniques involving random selec-
tion can be integrated into the proposed framework. In next sec-
tions, we will choose two well-known minimization algorithms:
the HGS and the GRE, and describe how to integrate our RTB tech-
nique with them. The HGS algorithm is common. In many studies,
HGS was compared with other algorithms for measuring the per-
formance [5,6,8,13–15,20,23,26,31], or had served as a basic algo-
rithm for developing new techniques [5,20,26,30,33]. The GRE
algorithm is also well-known, and it sometimes performs better
Fig. 4. The decision proc
than the HGS in minimizing test suites [8,14]. This is the reason
for choosing these two algorithms as illustrations.

3.2.1. M-HGS: the modified HGS algorithm by integrating RTB
Fig. 5 depicts the M-HGS; the modified HGS algorithm by inte-

grating RTB. In case of ties, instead of recursive examination or ran-
dom breakage, our approach immediately selects the test case
which covers the most secondary requirements. The algorithm
shown in Fig. 5 accepts two inputs: the associating testing sets
Tis for each primary requirement, and Ts

i s for each secondary
requirement, respectively. In addition, the variable curCard is used
to record the current cardinality under examination, and the max-
Card represents the maximum cardinality among all unmarked Tis.
The output of this algorithm is the test suite reduced from T, de-
noted by RS. It should be noticed that RS will satisfy all primary
testing requirements met by T.

At the outset of the algorithm, the necessary variables will be
initialized. After initialization, the algorithm enters a loop which
selects the most important test cases and puts them into RS (ini-
tially empty) one-after-the-other (line 22), until all primary
requirements are satisfied. In each loop, we take into account the
Tis with cardinality=curCard. Thus, when the algorithm first enters
the loop, it finds the Tis of a single element (cardinality one). Next,
it places the test cases that belong to those Tis into the RS and
marks all ris covered by the selected test cases. Then the Tis of car-
dinality two are considered. The test case that occurs the most
times among all Tis of cardinality two is added into RS and all un-
marked ris met by the test case are marked. This process will be re-
peated until the Tis of the maximum cardinality, i.e., the
cardinality=maxCard, are examined.

It is noted that when examining the Tis of cardinality m, there
may be a tie, because several test cases occur the most times
among all Tis of that size. Intuitively, a test case which essentially
covers more requirements exercises more elements in a program,
and then is likely to expose more faults. Therefore, the function
SelectTest regards the total number of secondary requirements
(including the marked and the unmarked), covered by each tied
test case, as the breaker. If there is still a tie, an arbitrary choice will
be returned (line 48). As mentioned in Section 2, the HGS algorithm
recursively examines candidates in the minimization process.
Thus, in M-HGS, the selection procedure can be simplified and
the minimization process is then further accelerated.

3.2.2. M-GRE: the modified GRE algorithm by integrating RTB
The GRE algorithm can be improved by considering the second-

ary criterion. To adopt the coverage information of secondary crite-
ess of applying RTB.



Fig. 5. M-HGS: the modified HGS algorithm by integrating RTB.

Table 5
An example of two 1-to-1 redundant test cases.

r1 r2 r3 r4 r5

t1 � � �
t2 � � �
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rion, we modify the 1-to-1 redundancy strategy and the greedy strat-
egy as follows:

(a) The modified 1-to-1 redundancy strategy—to remove 1-to-1
redundant test cases. If there are two 1-to-1 redundant test
cases, and they satisfy the same set of primary requirements,
the test case which covers fewer secondary requirements
will be removed. For example, Table 5 shows that test case
t1 and t2 are 1-to-1 redundant to each other. We will remove
the test case which contributes less coverage with respect to
the secondary criterion.

(b) The modified greedy strategy—to select test cases that meet
the maximum number of unsatisfied primary requirements.
If there is more than one candidate, the test case which sat-
isfies the most secondary requirements will be selected.
Fig. 6 shows the M-GRE, the modified GRE algorithm, by inte-
grating the RTB. It accepts five inputs: the set of primary require-
ments R, the set of all test cases T, the associating sets of test
cases Tis for each primary requirement, the associating sets of pri-
mary requirements Ris for each test case, and the associating sets of
secondary requirements Rs

i s for each test case. The output is the re-
duced suite of T, denoted by Selected.

First, the essential test cases are picked into Selected (line 18),
and the satisfied primary requirements and the test cases in Se-
lected are eliminated from Unsatisfied_Req and Test, respectively
(line 19–20). Next, the algorithm iteratively applies the modified
1-to-1 redundancy strategy and the essential strategy until all pri-
mary requirements are met (line 23, 26, and 29). The modified
greedy strategy is applied, while both the essential strategy and
the modified 1-to-1 redundancy strategy cannot be applied (line
32).

The function RemoveRedundant depicted in Fig. 7 implements
the modified 1-to-1 redundancy strategy. The subfunction Sort (line
14) first considers the number of primary requirements satisfied
by each test case, i.e. |Ri|, and then considers the number of second-
ary requirements satisfied by each test case with equal |Ri|. Thus,
when checking 1-to-1 redundancy, those test cases that cover
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more secondary requirements will be preserved with higher
chances. Similarly, the function GreedySelect, shown in Fig. 8,
Fig. 6. M-GRE: the modified GRE

Fig. 7. Function Rem
implements the modified greedy strategy. It also calls the Sort sub-
function in the beginning of the function (line 10). This function
algorithm by integrating RTB.

oveRedundant().



Fig. 8. Function GreedySelect().
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returns that test case which satisfies the most primary require-
ments. If there is more than one candidate, it returns that test case
which contributes the most coverage with respect to the secondary
criterion.

4. Experiment and analysis

In Section 3, we described the proposed approaches based on
two different algorithms. In this section, we report on the results
of the two experiments which were performed in order to evaluate
them. First, we compared the M-HGS with the original HGS and the
RSR algorithm which evolved from the HGS. Second, we compared
M-GRE with the original GRE. In the experiments, the Siemens
suite programs [28] and the Space program [22], which were
developed in the C language, were used to validate the perfor-
mance of the proposed approach. Each program was hand-instru-
mented to record all the coverage information. We implemented
all the algorithms in C++.

4.1. Experimental setup

We followed an experimental setup similar to [23]. The subject
programs, Siemens programs and the Space program are described
in Table 6. All of the programs, faulty versions, and test pools used
in our experiments were available from Ref. [34]. We considered
branch coverage as the primary testing requirement. To obtain
the branch coverage adequate test suites for each program, we first
randomly selected varying numbers of test cases from the associ-
ated test pool, added them to the suite, and analyzed the branch
coverage-based on the selected test cases. If the selected test cases
failed to cover all requirements, we added some additional test
cases to achieve 100% branch coverage. These additional test cases
were randomly selected from the test pool and each of them in-
creases the cumulative branch coverage of the suites. To allow dif-
ferent levels of redundancy, the number of random of test cases we
initially added to each suite varied over the sizes ranging from 0 to
0.5 times the number of lines of code in the program. We gener-
ated 1000 test suites for each program.
Table 6
Siemens suite subject programs.

Name Lines of
code

Faulty version
count

Test pool
size

Description

tcas 162 41 1608 Altitude separation
totinfo 346 23 1052 Information measure
schedule 299 9 2650 Priority scheduler
schedule2 287 10 2710 Priority scheduler
printtokens 378 7 4130 Lexical analyzer
printtokens2 366 10 4115 Lexical analyzer
replace 514 32 5542 Pattern replacement
Space 9127 38 13,585 Array definition language

interpreter
In addition, we used the def-use pair coverage as the secondary
criterion for the proposed reduction approaches and the RSR tech-
nique. The motivation for choosing the def-use pair coverage as the
secondary criterion is that the def-use pair coverage is dataflow-
based, while the branch coverage is controlflow-based. We have
hoped to identify a set of test cases which can exercise different
structural and functional elements through these two different
kinds of code-based testing criteria, and then improve the fault
detection capability of the test suites produced with our approach.

4.2. Measures

In this paper, we use the following criteria to judge the perfor-
mance of the proposed approach.

� The percentage of suite size reduction (SSR) [5,6,20,23] is defined
as
SSR ¼ jTj � jTminj
jTj � 100%; ð1Þ

where |T| is the number of test cases in the original suite and |Tmin|
is the number of test cases in the minimized/reduced suite. A higher
SSR means a better reduction capability.

� The percentage of fault detection effectiveness loss (FDE Loss) [5],
[6,20,23] is
FDE Loss ¼ jFj � jFminj
jFj � 100%; ð2Þ

where |F| is the number of distinct faults exposed by the original
suite, and |Fmin| is the number of distinct faults exposed by the min-
imized/reduced suite. For the subject programs, the fault-exposing
information of each test case is provided. Some test cases of a test
suite may expose the same faults, but a fault exposed by different
test cases of a suite will be counted only once. The closer the FDE
Loss is to zero, the better the fault-revealing capability.

� The faults-to-test ratio (FTT ratio) is
FTT ratio ¼ jFminj
jTminj

: ð3Þ

This is a measure of the number of faults detected by each test case
in the reduced suite. This ratio can partially represent the quality (in
terms of the fault detection capability) of each test case. A greater
faults-to-test ratio means the test cases have better quality on
average.

The above three criteria are used to measure the ability and
effectiveness of the test case reduction and fault detection. In fact,
the time required to finish the reduction process is also an impor-



Table 7
Experiment results for average percentage of suite size reduction.

Programs |T| |Tmin| SSR (%)

HGS M-HGS RSR HGS M-HGS RSR

tcas 38.83 5.00 5.12 6.77 77.12 76.87 71.96
totinfo 82.97 5.03 5.15 5.04 86.67 86.46 86.66
schedule 71.48 3.09 3.16 5.11 90.05 89.94 85.04
schedule2 68.55 4.71 4.78 4.95 86.71 86.61 86.24
printtokens 91.29 6.38 6.54 7.04 87.50 87.32 86.45
printtokens2 87.88 5.70 5.96 8.45 86.77 86.45 82.93
replace 124.89 10.65 11.27 21.67 84.05 83.57 71.95
Space 1848.84 110.47 117.66 1825.44 82.73 82.31 1.07
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tant criterion. When we use the HGS algorithm to minimize a test
suite, it will invoke at least one recursive function call to break the
tie when more than one candidate has equal importance. The
recursions may slow down the minimization process and become
the bottleneck of the algorithm. Notice that both the M-HGS and
RSR evolved from the HGS. Hence, for the first experiment, we
counted the occurrences of ties when applying the HGS. The per-
centage of tie occurrences (PTO) is defined as

PTO ¼ jCj
jCtotalj

� 100%; ð4Þ

where |C| is the number of tie occurrences, and |Ctotal| is the total
number of candidate selections during minimization. High recur-
sion percentage means that there are a large number of ties during
the minimization. In other words, the proposed tie-breaking tech-
nique may provide significant improvements in both speed and
FDE Loss under the above condition. Besides, we recorded the exe-
cution time of minimization programs in both experiments. For the
above measures, we computed average values across all 1000 suites
for each subject program.

4.3. Experimental results of M-HGS

Suite size reduction: Table 7 shows the average size of each ori-
ginal test suite, the average size of each reduced test suite, and the
average SSR related to all selected approaches. As seen from Table
7, the proposed algorithm (M-HGS) provides almost the same
reduction abilities as the HGS. Except for totinfo, the average sizes
of reduced suites generated by the RSR were larger than those
generated by the HGS and M-HGS; which is because the RSR al-
ways selectively keeps redundant test cases with the goal of expos-
ing more faults. Considering totinfo, although the M-HGS gives the
lowest value of SSR, the differences compared to HGS and RSR are
minor. Overall, compared with HGS, the proposed approach has al-
most equal ability of reducing test suites for the selected subject
programs.Fault detection effectiveness loss: Using (2), we calculated
the FDE loss for the three approaches in Table 8. For all the subject
programs except for Space, Table 8 clearly shows that the test
Table 8
Experiment results for average percentage of fault detection effectiveness loss.

Programs |F| |Fmin| FDE Loss (%)

HGS M-HGS RSR HGS M-HGS RSR

tcas 17.80 6.51 6.81 8.31 56.65 55.10 47.39
totinfo 18.82 11.35 14.19 11.35 38.02 23.59 38.00
schedule 5.55 1.96 2.22 2.58 61.33 56.97 49.62
schedule2 4.67 2.07 2.37 2.10 50.28 44.62 49.58
printtokens 4.57 2.81 3.06 2.85 35.37 30.20 34.50
printtokens2 8.89 7.36 7.57 7.68 16.68 14.27 13.20
replace 19.07 7.66 8.61 12.40 56.80 52.18 32.62
Space 33.22 27.22 27.13 33.22 15.46 16.89 0.00
suites reduced by both M-HGS and RSR can detect more faults than
those reduced by the original HGS. Furthermore, compared to RSR,
M-HGS also caused less percentage of fault detection effectiveness
loss for totinfo, schedule2 and printtokens. Even though the values
of FDE loss are not the lowest for other subject programs, M-HGS
still has a significant improvement on fault detection effectiveness
compared to the original HGS. Although the suites reduced by RSR
exposed the most faults for tcas, schedule, printtokens2, and re-
place, it suffers from the penalty of having the worst SSR. For
Space, M-HGS seemed to give the worse performance on FDE Loss
when compared to HGS. However, the difference would prove to be
not statistically significant in the following paragraph. Table 7 and
Table 8 show that, except for Space, when HGS is replaced by M-
HGS, M-HGS achieved significant improvements on FDE loss (the
maximum reached 14.43%), but it provided almost equal SSR in
all subject programs compared with HGS (the deteriorations do
not exceed 0.48%).

To determine whether the improvement in fault detection
effectiveness we observed for the M-HGS-reduced suites was sta-
tistically significant, we conducted a t-test for matched pairs1 [2].
For each of the 1,000 test suites, the number of distinct faults ex-
posed by the HGS-reduced suite and the number of distinct faults ex-
posed by the corresponding M-HGS-reduced suite were considered a
matched pair. We assumed that there is no difference in the mean
number of faults exposed by the HGS-reduced suites and the M-
HGS-reduced suites (the null hypothesis). If the computed p-value is
less than 0.05 (the significance level), statistical practitioners often in-
fer that the null hypothesis is false [2]. The p-values computed for
our test are shown in Table 9. This indicates that, except for Space,
the observed differences are statistically significant. For Space, we
do not have strong evidence to reject the null hypothesis.Faults-to-
test ratio: Table 10 shows the average FTT ratio with respect to each
Siemens suite program. From Table 10, we can find that M-HGS gives
a good performance, since the values of FTT for most subject pro-
grams are all at their highest. Although the M-HGS gives a lower
FTT value in printtokens2 and Space, as compared to HGS, the differ-
ence is not significant. This indicates that the test cases selected by
the proposed technique are likely to expose more faults; i.e., the
suites reduced by the proposed approach may have a better qual-
ity.Acceleration of minimization process: Fig. 9 illustrates the values
of PTO for each of the subject programs, and Table 11 shows the vari-
ations on the execution time taken to reduce the test suites when
HGS was replaced by M-HGS and RSR, respectively. From Fig. 9, it
is found that the values of PTO range between 53 and 94%. That is,
the ties frequently occur during the reduction for each program. As
1 A t-test for matched pairs is a statistical method used to infer the statistical
significance of the difference between the means of two populations, given samples
where each observation in one sample is logically matched with an observation in the
other sample. The testing procedure begins with a null hypothesis that assumes the
population means are identical, and then computes a p-value from the paired data
samples. Should the p-value be less than a selected significance level, the null
hypothesis would be rejected.



Table 11
Variations on execution time compared with HGS.

Programs M-HGS RSR

tcas �85.17% +1.53%
totinfo �94.74% +0.25%
schedule �94.52% +1.62%
schedule2 �96.00% +0.66%
printtokens �85.46% +1.12%
printtokens2 �84.01% +0.55%
replace �92.41% +0.50%
Space �96.27% +0.01%

Table 12
Experiment results for average percentage of suite size reduction.

Programs |T| |Tmin| SSR (%)

GRE M-GRE GRE M-GRE

tcas 38.86 5.10 5.05 86.88 87.00
totinfo 81.23 5.07 5.07 93.76 93.76
schedule 70.89 3.16 3.18 95.54 95.51
schedule2 68.16 4.82 4.82 92.93 92.93
printtokens 91.20 6.62 6.64 92.74 92.72
printtokens2 89.12 5.78 5.76 93.51 93.54
replace 123.17 11.49 11.57 90.67 90.61
Space 2197.90 113.83 113.64 88.66 88.67

Fig. 9. The percentage of tie occurrence for each subject program.

Table 9
Computed p-values of t-test for matched pairs: HGS and M-HGS.

Program Name Computed p-value

tcas 0.0004
totinfo 0.0000
schedule 0.0000
schedule2 0.0000
printtokens 0.0000
printtokens2 0.0000
replace 0.0000
Space 0.7505

Table 10
Faults-to-test ratio.

Programs HGS M-HGS RSR

tcas 1.30 1.33 1.23
totinfo 2.26 2.77 2.25
schedule 0.65 0.71 0.52
schedule2 0.45 0.51 0.44
printtokens 0.46 0.49 0.43
printtokens2 1.36 1.34 0.95
replace 0.72 0.77 0.58
Space 0.25 0.23 0.04

Table 13
Experiment results for average percentage of fault detection effectiveness loss.

Programs |F| |Fmin| FDE Loss (%)

GRE M-GRE GRE M-GRE

tcas 17.70 6.41 6.38 63.79 63.95
totinfo 18.80 13.56 13.80 27.87 26.60
schedule 5.60 2.12 2.21 62.20 60.47
schedule2 4.63 2.20 2.28 52.50 50.77
printtokens 4.57 2.98 3.08 34.83 32.68
printtokens2 8.94 7.56 7.62 15.45 14.68
replace 19.02 8.11 8.37 57.36 55.98
Space 33.79 27.00 26.97 19.85 19.94

Table 14
Computed p-values of t-test for matched pairs: GRE and M-GRE.

Program name Computed p-value

tcas 0.6361
totinfo 0.0000
schedule 0.0000
schedule2 0.0000
printtokens 0.0000
printtokens2 0.0000
replace 0.0000
Space 0.4359
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is clear from Table 11, RSR did not speed up the reduction, while M-
HGS saved a very high percentage of execution time (about 84–96%
reduction) compared to HGS. This is because the proposed approach
breaks the ties by the secondary requirement instead of by recursive
examinations. If the proposed approach is adopted in a large-scale
software project, the test team can benefit greatly from this charac-
teristic, because the sizes of the test pools and the number of soft-
ware requirements are considerable. Both RSR and M-HGS can
improve the fault detection effectiveness of the reduced test suites
compared to HGS. But for most of the subject programs, the sizes
of the test suites reduced by M-HGS are less than those reduced
by RSR. Further, M-HGS can also save an extremely high percentage
of reduction time. On the whole, the proposed M-HGS approach pro-
vides a good performance on the Siemens suite programs.

4.4. Experimental results of M-GRE

Suite size reduction: Table 12 shows the average size of each ori-
ginal test suite, the average size of each reduced test suite, and the
average SSR related to the two approaches. As seen from Table 12,
the proposed algorithm (M-GRE) provides almost equal or better
reduction abilities than the GRE. For tcas, totinfo, schedule2, print-
tokens2 and Space, the average sizes of reduced suites generated
by the M-GRE were equal to or smaller than those generated by
GRE. Considering the other three subject programs, although the
M-GRE gives a lower value of SSR, the differences compared to
GRE are extremely minor. Overall, compared with the GRE, the pro-
posed approach has almost the same or better ability of reducing
test suites for the selected subject programs.Fault detection effec-
tiveness loss: Using (2), we calculated the FDE loss for the two ap-
proaches in Table 13. The computed p-values for comparing the
number of distinct faults exposed by the GRE-reduced suites with
the number of distinct faults exposed by the corresponding M-
GRE-reduced suites are shown in Table 14. As is clear from Table
13, except for tcas and Space, the test suites reduced by M-GRE



Table 15
Faults-to-test ratio.

Programs GRE M-GRE

tcas 1.26 1.26
totinfo 2.68 2.72
schedule 0.67 0.70
schedule2 0.46 0.47
printtokens 0.45 0.46
printtokens2 1.31 1.32
replace 0.71 0.72
Space 0.24 0.24

Table 16
Variations on execution time compared with GRE.

Programs M-GRE

tcas +4.23%
totinfo +1.06%
schedule +0.33%
schedule2 �0.13%
printtokens +0.83%
printtokens2 +0.10%
replace +0.07%
Space �4.20%
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can detect more faults than those reduced by the original GRE in all
subject programs. Although the suites reduced by GRE exposed
more faults for tcas and Space, it suffers from the penalty of having
worse SSR. Besides, the differences between the FDE losses of GRE
and M-GRE for these two programs have not proven to be statisti-
cally significant. Tables 12 and 13 show that for most of the subject
programs, compared to GRE, M-GRE provided equal SSR, and on
average achieved slight improvements on FDE loss. For tcas and
Space, we do not have strong evidence to reject the null hypothe-
sis. For the other programs, the differences between the two meth-
ods shown in Table 13 were statistically significant.

Some may argue that the improvement on FDE loss is minor in
this experiment. Compared to the original GRE, the proposed ap-
proach further deals with the following two conditions: (1) under
the 1-to-1 redundancy strategy, there are two 1-to-1 redundant test
cases and they cover the same set of primary requirements, and (2)
under the greedy strategy, there is more than one test case that sat-
isfies the equal number of primary requirements. According to our
observation, the above two conditions seldom happened in the
experiment. This may be the reason that our technique cannot
get a significant improvement on the FDE Loss.

Faults-to-test ratio: Table 15 shows the average FTT ratio with
respect to each program. From Table 15, we can find that the M-
GRE gives a good performance, since the values of FTT for all sub-
ject programs are the highest. This indicates that the test cases se-
lected by the proposed technique are likely to expose more faults;
i.e., the suites reduced by the proposed approach may have a better
quality.

Acceleration of minimization process: Table 16 shows the varia-
tions on the execution time taken to reduce the test suites when
the GRE was replaced by the M-GRE. In our experiments, in gen-
eral, the M-GRE neither speeded up nor decelerated the reduction.
For the M-GRE, we modified and extended the two strategies of
GRE and did not deal with the speed issue. Thus, the results are
predictable.

The experimental results show that for most of the subject pro-
grams, by integrating the proposed RTB technique with the GRE
algorithm, we can slightly improve the fault detection effective-
ness of reduced test suites while hardly affecting the sizes of the
suites. As a result, the FTT ratios of reduced suites are as good as,
or better than, those of the GRE-reduced suites.
5. Conclusion and future work

Traditional test suite reduction techniques usually adopt ran-
dom selection whenever ties occur. Nevertheless, random elimi-
nation may exclude the test cases which are more likely to
detect faults than the preserved one. In fact, the evaluation of
software testing efficiency usually takes into account more than
one criterion. Therefore, in this paper, we proposed a new ap-
proach, i.e., reduction with tie-breaking (RTB), to enhance the
existing techniques. In the proposed framework, an additional
coverage criterion was used to break ties during minimization
process. To illustrate the concept of RTB, we chose the HGS and
the GRE approach, and developed new algorithms. In fact, all
existing test suite minimization techniques involving random
selection could be integrated into this framework through the
proposed decision process.

In the experimental study, the Siemens suite programs and the
Space program are used to judge the performance of the proposed
approach. In the first experiment, for most of the subject pro-
grams, our technique improved the fault detection effectiveness
with a negligible increase in the sizes of the reduced suites, and
greatly accelerated the minimization process. In the second
experiment, the improved fault detection effectiveness of the
suites reduced by our technique was not considerable, but the
differences were statistically significant for most of the subject
programs. Besides, the percentage of suite size reduction pro-
duced by our approach is still comparable. As a result, the average
number of faults revealed by each test case is raised. The results
may mean the proposed approach can refine the selection of test
cases. Future research will continue to assess the effectiveness of
incorporating other test suite reduction approaches into the pro-
posed framework.
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