Test Suite Reduction Analysis with Enhanced Tie-Breaking
Techniques

Jun-Wei Lin, Chin-Yu Huang, and Chu-Ti Lin
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan
{castman@selab.cs.nthu.edu.tw|cyhuang@cs.nthu.edu.tw|d924390@oz.nthu.edu.tw}

Abstract — Test suite minimization techniques try to
remove redundant test cases of a test suite. However,
reducing the size of a test suite might reduce its ability to
reveal faults. Most of prior works which address this
problem affect some extent of suite size reduction. In this
paper, we present a novel approach for test suite reduction
that uses additional testing criterion to break the ties in the
minimization process. We performed an experiment with the
Siemens suite subject programs. The experiment results
show that, compared to existing approaches, the proposed
approach can improve the fault detection effectiveness of
reduced suites with negligible increase in the size of the
suites. Besides, the proposed approach can also accelerate
the process of minimization.

Keywords — Software testing, testing criteria, test suite
reduction, test suite minimization, fault detection
effectiveness, tie-breaking.

I. INTRODUCTION

As software system develops and evolves, new test
cases are continually generated to validate the latest
modifications. As a result, the sizes of test suites grow
over time. However, a percentage of test cases in a test
suite may become redundant because the requirements
executed by one test case may also be validated by others.
Due to time and resource constraints, it may be
impossible to rerun all the test cases whenever the
software is modified. Therefore, it is desirable to keep test
suite sizes manageable by removing redundant test cases.
This process is called test suite minimization (also known
as test suite reduction). The problem of finding a minimal
size subset from an unminimized test suite to satisfy the
same requirements is called test suite minimization
problem [1]. A classical greedy heuristic [2] solves this
problem by repeating the following two steps: (1) to pick
the test case which meets the most requirements (random
selecting if multiple candidates exist); (2) to remove the
requirements covered by the selected test case. They stop
when all requirements are satisfied. Another heuristic
developed by Harrold et al. [1] selects a representative set
of test cases from a test suite, but it may take considerable
computing effort in the recursion of the selecting process.

A potential drawback of existing minimization
approaches is that some test case removals in a test suite
may significantly decrease the fault-detecting capability.
In the literatures, there exist some conflicts among
researches related to test suite minimization. Wong et al.
[3] reported that while the all-uses coverage was kept

978-1-4244-2330-9/08/$25.00 ©2008 IEEE

constant, test suites could be minimized at little or no cost
to their fault detection effectiveness. Later, Rothermel et
al. [4] argued that the fault detection capabilities of test
suites can be severely compromised by minimization.
Intuitively, a test suite which includes more test cases
may have a better opportunity to reveal more faults.
Jeffrey and Gupta [5] proposed an approach to test suite
reduction, which attempts to selectively keep redundant
test cases with the goal of decreasing the loss of fault
detection effectiveness. However, the redundancy
increases the overhead of maintaining and reusing test
suites.

Considering test suite minimization, instead of
including more test cases in the reduced suite, it may be
helpful to pick the test cases that are likely to expose
faults. Besides, the computing time of minimization
process may become an issue when the amounts of test
cases and requirements grow. If there is more than one
test case with equal importance to a suite, the elimination
of the redundant test cases is in the condition of tie. In this
paper, we will present a new technique for test suite
reduction called Reduction with Tie-Breaking (RTB),
which uses additional criterion to break the ties during the
minimization. According to previous studies about the
effectiveness of testing coverage criteria [5], [6], we
believe that our approach can improve the fault-revealing
capability of the reduced suites. We will also implement
our approach and conduct experiments with Siemens suite
programs [6] to evaluate and compare the results with
prior experimental studies [4], [5].

The remainder of this paper is organized as follows.
In section II, we discuss the related work. Our algorithm
for test suite reduction is described in section III. Section
IV presents experiments that compare existing test suite
minimization techniques with our approach. Finally, the
conclusion and future work are given in section V.

II. RELATED WORK

The test suite minimization problem [1] can be
formally stated as follows. Given:

(1) A test suite T of test cases {¢, 2, £3,..., lx}.

(2) A set of testing requirement {r,, r,, 7s,..., r,} that
must be satisfied to provide the desired testing
coverage of the program.

(3) Subsets {T), Ty, Ts,..., T,} of T, one associated with
each of the #;s such that any one of the test cases #s
belonging to T; satisfies r;.

1228

Proceedings of the 2008 IEEE ICMIT

Problem: Find a minimal cardinality subset of T that
is capable of exercising all 7s exercised by the
unminimized test suite 7.

This problem is equivalent to the NP-Complete
minimum set-covering problem [T7]. Thus, heuristic
solutions for this problem are important. Till now, several
heuristics for test suite minimization have been proposed.
Chvatal [2] proposed a simple heuristic for set-covering
problem, which can be applied to the test suite
minimization problem. Harrold et al. [1] developed an
algorithm called the HGS algorithm, this heuristic accepts
the associating testing sets Tjs for each requirement
respectively, and finds a representative set that covers all
requirements. Later, Chen and Lau [8] also proposed the
GRE algorithm that uses two dividing strategies to
optimally minimize a test suite. Nevertheless, these two
strategies cannot be applied to every suite. In recent years,
Tallam and Gupta [9] presented another heuristic called
Delayed-Greedy that exploits both the implications
among the test cases and the implications among the
requirements to enable further reduction of test suites.
Considering the Modified Condition/Decision Coverage
(MC/DC) criterion, Jones and Harrold [10] described two
techniques for test suite minimization. Black et al. [11]
proposed a bi-criteria approach for test suite
minimization that meets the following two objectives
simultaneously: minimizing a test suite with regard to a
particular level of coverage while maximizing error
detection rates. Apart from test suite minimization,

another attractive topic is related to fest case prioritization.

In contrast to the minimization techniques that attempt to
remove test cases from a suite, the prioritization
techniques [12], [13] focus on how to recognize an
ordering of a suite for early fault detections.

A number of empirical studies using existing
minimization techniques have been reported. Wong et al.
used the ATACMIN tool to minimize the test suites that
were not coverage-adequate [3], [14]. Their work shows
that when the coverage is kept constant, the size of a test
set can be reduced at little or no expense to its fault-
detection effectiveness. In contrast, the empirical studies
conducted in [4] suggest that reducing test suites can
severely compromise the fault detection capabilities of the
suites. Leon and Podgurski [15] presented an empirical
comparison of the coverage-based and distribution-based
techniques for test suite minimization and prioritization.
The results indicate that both approaches are
complementary in the sense that they find different
defects.

Testing criteria (such as branch coverage and all-uses
coverage) are used to assess the adequacy of test suites.
Some empirical studies on the effectiveness of testing
criteria have been performed [6], [16], [17]. In
experiments by Hutchins et al. [6], the tests based on
controlflow and dataflow criteria are frequently
complementary in their effectiveness. Recently, Jeffrey
and Gupta [5] suggested that multiple testing criteria can
be used to effectively identify test cases that are likely to
expose different faults in software. Their approach (called

the RSR technique hereafter) for test suite minimization
improves the fault detection effectiveness of the reduced
suite, but selectively adds redundancy to the suite.
Sampath et al. [18] presented three strategies including
the tie-breaker concept for integrating customized usage-
based test requirements with traditional test requirements
to increase the effectiveness of reduced test suites.
However, it should be noted that their approaches are
specific to web application testing. In practice, a software
system often contains several hundreds of subprograms. A
large number of requirements and test cases may be
involved. As a result, the time consumed in the
minimization process may become an important issue.
Unfortunately, when determining the test cases with better
fault-revealing capability, most of the existing techniques
for test suite minimization do not avoid affecting the
extent of test suite size reduction. Moreover, the
acceleration of minimization process is also ignored.

II. TEST SUITE REDUCTION WITH TIE-BREAKING

In the traditional greedy algorithms or the HGS, the
random selection will be adopted whenever more than one
test case has the same importance with respect to the
coverage criterion for minimization. However, the
random elimination may exclude the test cases which are
more likely to detect faults than the preserved one. The
RSR improves the fault detection effectiveness by adding
redundancy, which impairs its reducing ability. In fact, the
evaluation of software testing efficiency usually takes into
account more than one criterion. Thus, in addition to the
primary criterion, the importance of these candidates
could be further evaluated by another coverage criterion,
denoted by the secondary criterion. We can break the ties
in minimization process by selecting the test case which
contributes the most coverage with respect to the
secondary criterion. That is, the fault detection
effectiveness can be enhanced by using a refined way to
select a test case rather than adding redundancies.
Consequently the proposed framework still tries to
remove all redundancies in a test suite, and then retains
the reducing ability.

All test suite minimization techniques involving
random selection can be integrated into this framework.
Specifically for the HGS algorithm which recursively
examines candidates in minimization process, we
incorporate the HGS algorithm into this framework to
simplify the selection procedure and further accelerate the
whole process. In case of ties, instead of recursive
examination or randomly breaking, our approach
immediately selects the test case which covers the most
secondary requirements. The algorithm is developed and
depicted in Fig. 1. It accepts two inputs: the associating
testing sets Tjs for each primary requirement and T;'s for
each secondary requirement, respectively. Besides, the
variable curCard is used to record the current cardinality
under examination, and maxCard represents the
maximum cardinality among all unmarked 7;s. The output
of this algorithm is the test suite reduced from 7, denoted

1229

Proceedings of the 2008 IEEE ICMIT

by RS. It should be noticed that RS will satisfy all primary
testing requirements met by 7.

At the outset of the algorithm, the necessary variables
will be initialized. After initialization, the algorithm enters
a loop which selects the most important test case and puts
it into RS (initially empty) one-after-the-other (Line 22)
until all primary requirements are satisfied. In each loop,
we take into account the T;s with cardinality=curCard.
Thus, when the algorithm first enters the loop, it finds out
the T;s of single element (cardinality one). Next, it places
test cases that belong to those Ts into the RS and marks
all r;s covered by the selected test cases. Then the T;s of
cardinality two are considered. The test case that occurs
the most times among all Tjs of cardinality two is added
into RS and all unmarked r;s met by the test case are
marked. This process will be repeated until the Tjs of the
maximum cardinality, i.e., the cardinality=maxCard, are
examined.

It is noted that, when examining the T;s of cardinality
m, there may be a tie because several test cases occur the
most times among all T;s of that size. Intuitively, a test
case which essentially covers more requirements
exercises more elements in a program, and then is likely

to expose more faults. Therefore, the function SelectTest
regards the total number of secondary requirements
(including the marked and the unmarked) covered by each
tied test case as the breaker.

IV. EXPERIMENT & ANALYSIS

In the experiments, the Siemens suite programs [6]
which were developed in C language were used to
validate the performance of the proposed approach. Each
program was hand-instrumented to record all the coverage
information of the suite. In addition to the proposed
approach, the HGS algorithm and the RSR technique were
also selected for the purpose of comparisons. We
implemented the three approaches in C++.

A. Experiment Setup

We followed an experimental setup similar to [4]. The
subject programs, Siemens programs, were described in
Table 1. All programs, faulty versions, and test pools used
in our experiments were available from [19]. We
considered the branch coverage as the primary testing

1 algorithm ReduceWithTieBrk

2

3 t5, ts, ..., ty test cases in original (unreduced) test suite 7

4 71, 72, ..., ' Set of primary testing requirements

5 ri' rs, ..., rm': set of secondary testing requirements

6

7 input

8 Ty, Ty, ..., Ty: subsets of T'which meet the primary requirements r;, r2, ..., r, respectively
9 T/, T3, ..., T,,": subsets of Twhich meet the secondary requirements r/’, 75*, ..., r," respectively
10 output

11 RS:areduced subset of 7’

12

13 begin

14 maxCard « the maximum cardinality among all T;’s;

15 curCard — 0,

16 RS < {};

17 loop

18 curCard «— curCard + 1;

19 while there is at least a 7; of curCard s.t. r;is unmarked do
20 list +— all tests in T;‘s of curCard s.t. r; is unmarked;
21 nextTest < SelectTest(curCard , list),

22 RS «— RS U { nextTest },;

23 mayReduce < false;

24 for each 7; containing nextTest do

25 mark r;;

26 if T; ‘s cardinality = maxCard then

27 mayReduce «— true;

28 endfor

29 if mayReduce then

30 maxCard < the maximum cardinality among all 7; s.t. r;is unmarked
31 endwhile

32 until curCard = maxCard

33 end

34

35 function SelectTest(size, list)

36 for each test case ¢ in list do

37 count[t] < number of unmarked 7;’s of size containing ¢;
38 testList + test cases in lists.t. count[t] is maximum;

39 ifthe cardinality of testList =1 then

40 return the test case in testList,

41 else

42 for each test case ¢ in testList do

43 count[t] + number of 7;"’s containing ¢,

44 secTestList < test cases in testList s.t. count[t} is maximum;
45 if the cardinality of secTestList =1 then

46 return the test case in sec7estList,

47 else

48 return any test case in sec7estList at random,

49 end SelectTest

/* there are more than one candidates.*/
/* select the test case which covers more
secondary requirements. */

/* ties are broken arbitrarily*/

Fig. 1. The implementation of reduction with tie-breaking.

1230

Proceedings of the 2008 IEEE ICMIT

TABLE1
SIEMENS SUITES SUBJECT PROGRAMS

Name Lines of Code | Faulty Version Count | Test Pool Size Description
tcas 162 41 1608 altitude separation
totinfo 346 23 1052 information measure
schedule 299 9 2650 priority scheduler
schedule2 287 10 2710 priority scheduler
printtokens 378 7 4130 lexical analyzer
printtokens2 366 10 4115 lexical analyzer
replace 514 32 5542 pattern replacement

requirement. To obtain the branch-coverage adequate test
suites for each program, we first randomly selected
varying numbers of test cases from the associated test
pool, added to the suite, and analyzed the branch
coverage based on the selected test cases. If the selected
test cases failed to cover all requirements, we added some
additional test cases to achieve 100% branch coverage.
To allow different levels of redundancy, the random
amount of test cases we initially added to each suite
varied over sizes ranging from 0 to 0.5 times the number
of lines of code in the program. We totally generated
1000 test suites for each program.

Besides, we used the def-use pair coverage as the
secondary criterion for the proposed reduction approach
and the RSR technique. The motivation for choosing the
def-use pair coverage as the secondary criterion is that the
def-use pair coverage is dataflow-based while the branch
coverage is controlflow-based. We hope to identify a set
of test cases which can exercise different structural and
functional elements through these two different kinds of
code-based testing criteria, and then improve the fault
detection capability of the test suites reduced with our
approach.

B. Measures

In this paper, we use the following criteria to judge
the performance of the proposed approach.

® The percentage of suite size reduction (SSR) [4], [5]
is defined as

SSR=|T|

—_LT'“i—“lxlOO%, M
T

where |7] is the number of test cases in the original

suite and |7, is the number of test cases in the

minimized/reduced suite. Higher SSR means better

reduction capability.

® The percentage of fault detection effectiveness loss
(FDE Loss) [4], [5]is
FDE Loss = '-”|‘F|—|Fm|x 100%,

where |F] is the number of distinct faults exposed by
the original suite, and |F,,;,| is the number of distinct
faults exposed by the minimized/reduced suite. The
closer FDE Loss is to zero, the better the fault reveal
capability.

® The faults-to-test ratio (FTT ratio) is

1231

FTT ratio= % : 3)
It is a measure of the number of faults detected by
each test case in the reduced suite. This ratio can
partially represent the quality (in terms of the fault
detection capability) of each test case. Greater faults-
to-test ratio means the test cases have better quality
on average.

The above three criteria are used to measure the
ability of the test case reduction and fault detection
effectiveness. In fact, the time required to finish the
reduction process is also an important criterion. When we
use the HGS algorithm to minimize a test suite, it will
invoke at least one recursive function call to break the tie
when more than one candidate has equal importance. The
recursions may slow down the minimization process and
become the bottleneck of the algorithm. Notice that both
RTB and RSR evolved from HGS. Hence, in addition to
the consumed time, we also counted the occurrences of
ties when applying the HGS. The percentage of tie
occurrences (PTO) is defined as:

PTO = €l x100%,

@
total

where |C| is the number of tie occurrences, and |C,y, is
the total number of candidate selections during
minimization. High recursion percentage means that there
are a large number of ties during the minimization. In
other words, the proposed tie-breaking technique may
have significant improvement in both speed and FDE
Loss under the above condition. For the above measures,
we computed average values across all 1000 suites for
each subject program.

C. Discussions

Suite Size Reduction: Table Il shows the average size
of each original test suite, the average size of each
reduced test suite and the average SSR related to all
selected approaches. As seen from Table I, the proposed
algorithm (RTB) provides almost the same reduction
abilities as the HGS. Except for totinfo, the average
sizes of reduced suites generated by RSR were larger than
those generated by HGS and RTB; that is because the
RSR always selectively keeps redundant test cases with
the goal of exposing more faults. Considering totinfo,
although the RTB gives the lowest value of SSR, the
differences compared to HGS and RSR are minor.
Overall, compared with HGS, the proposed approach has

Proceedings of the 2008 IEEE ICMIT

almost equal ability of reducing test suites for the selected
subject programs.

Fault Detection Effectiveness Loss: Using (2), we
calculated the FDE Loss for the three approaches in Table
I11. Table III clearly shows that the test suites reduced by
both RTB and RSR can detect more faults than those
reduced by the original HGS in all subject programs.
Further, compared to RSR, RTB also caused less
percentage of fault detection effectiveness loss for
totinfo, schedule2 and printtokens. Even
though the values of FDE Loss are not lowest for other
subject programs, RTB still has a significant
improvement on fault detection effectiveness compared to
the original HGS. Although the suites reduced by RSR
exposed the most faults for tcas, schedule,
printtokens2 and replace, it suffers from the
penalty of having the worst SSR. Table IV lists the
deterioration of SSR and the improvement of FDE Loss
when HGS is replaced by the proposed RTB. As seen
from Table IV, RTB achieved significant improvements
on FDE Loss (the maximum reached 14.43%), but it
provided almost equal SSR in all subject programs
compared with HGS (the deteriorations do not exceed
0.48%).

Faults-to-Test Ratio: Table V shows the average
FTT ratio with respect to each Siemens suite program.
From Table V, we can find that RTB gives a fairly
outstanding performance since the values of FTT for most
subject programs are all the highest. Although RTB gives
a lower FTT value in printtokens?2 as compared to
HGS, the difference is not significant. This indicates that
the test cases selected by the proposed technique are
likely to expose more faults, i.e., the suites reduced by the
proposed approach may have better quality.

Acceleration of Minimization Process: Fig. 2
illustrates the values of PTO for each subject programs,
and Table VI shows the variations on the execution time
taken to reduce the test suites when HGS was replaced by
RTB and RSR, respectively. From Fig. 2, it is found that
the values of PTO range between 53% and 83%. That is,
the ties frequently occur during the reduction for each
program. As is clear from Table VI, RSR did not speed
up the reduction while RTB saved a very high percentage
of execution time (about 84%-96% reduction) compared
to HGS. This is because the proposed approach breaks the
ties by the secondary requirement instead of recursive
examinations. If the proposed approach is adopted in a
large-scale software project, the test team can benefit
greatly from this characteristic because the sizes of test
pools and the number of software requirements are
considerable.

Both RSR and RTB can improve the fault detection
effectiveness of the reduced test suites compared to HGS.
But the sizes of test suites reduced by RTB are less than
those reduced by RSR. Further, RTB can also save an
extremely high percentage of reduction time. On the
whole, the proposed approach RTB provides a good
performance on the Siemens suite programs.

1232

TABLEII
EXPERIMENT RESULTS FOR AVERAGE PERCENTAGE OF SUITE
SIZE REDUCTION
Programs | |Tmin| SSR (%
HGS | RTB | RSR | HGS | RTB | RSR
tcas 3883 | 500 | 5.12 | 6.77 | 77.12 | 76.87 [71.96
totinfo 8297 | 503 | S5.15 | 5.04 | 86.67 | 86.46 | 86.66
schedule 7148 | 3.09 | 3.16 | S.11 | 90.05 | 89.94 | 85.04
schedule2 6855 | 471 | 478 | 495 | 86.71 | 86.61 | 86.24
printtokens | 91.29 | 6.38 | 6.54 | 7.04 | 87.50 | 87.32 | 86.45
printtokens2 | 87.88 | 5.70 | 596 | 845 | 86.77 | 86.45 | 82.93
replace 124.89 | 10.65 | 11.27 | 21.67 | 84.05 | 83.57 | 71.95
TABLE III
EXPERIMENT RESULTS FOR AVERAGE PERSENTAGE OF FAULT
DETECTION LOSS
Programs IF| |Fmin]| FDE Loss (%)
HGS | RTB | RSR [HGS | RTB | RSR
tcas 17.80 | 6.51 | 6.81 831 | 56.65 | 55.10 | 47.39
totinfo 18.82 | 11.35 | 14.19 | 11.35 | 38.02 | 23.59 | 38.00
schedule 555 | 196 | 222 | 2.58 | 61.33 | 56.97 | 49.62
schedule2 4.67 | 207 | 237 | 2.10 | 50.28 | 44.62 | 49.58
printtokens | 4.57 | 2.81 3.06 | 2.85 | 3537 | 30.20 | 34.50
printtokens2 | 8.89 | 736 | 7.57 | 7.68 | 16.68 | 14.27 | 13.20
replace 19.07 | 7.66 | 861 | 1240 | 56.80 | 52.18 | 32.62
TABLE 1V
THE EFFECTS ON SSR AND FDE LOSS WHEN HGS 1S REPLACED BY
RTB
Programs SSR Deterioration FDE Loss Improvement
tcas +0.25 % +1.55 %
totinfo +0.21 % +14.43 %
schedule +0.11 % +4.36 %
schedule2 +0.10 % +5.66 %
rinttokens +0.19 % +5.16 %
printtokens2 +0.32 % +2.41 %
replace +0.48 % +4.62 %
TABLE V
FAULTS-TO-TEST RATIO
Programs HGS | RTB | RSR
tcas 130 | 133 | 1.23
totinfo 226 | 277 | 225
schedule 0.65 | 0.71 | 0.52
schedule2 045 1 051 | 044
printtokens | 0.46 | 0.49 | 043
printtokens2 | 1.36 | 1.34 | 095
replace 0.72 | 0.77 | 0.58
TABLE VI
VARIATIONS ON EXECUTION TIME COMPARED WITH HGS
Programs RTB RSR
tcas —85.17% | +1.53%
totinfo —94.74% | +0.25%
schedule -94.52% | +1.62%
schedule2 | —96.00% | +0.66%
printtokens | —85.46% | +1.12%
printtokens2 | —84.01% | +0.55%
replace —92.41% | +0.50%

V. CONCLUSION AND FUTURE WORK

Traditional test suite reduction techniques usually

adopt the random selection whenever the ties occur.
Nevertheless, the random elimination may exclude the
test cases which are more likely to detect faults than the
preserved one. In fact, the evaluation of software testing

Proceedings of the 2008 IEEE ICMIT

PTO (%)

90

70.88%

totinfo

67.88%

82.22%
| I ”Ixu/ |
schedule printtokens replace

i) 50%
schedule2 printtokens2

| l
i
|
|
Subject Program

Fig. 2. The percentage of tie occurrence for each subject program.

53.33%

efficiency usually takes into account more than one
criterion. Therefore, in this paper, we proposed a new
approach, i.e., reduction with tie-breaking (RTB), to
enhance the existing techniques. In the proposed
framework, an additional coverage criterion was used to
break ties during minimization process. To illustrate the
concept of RTB, we chose the HGS approach as an
illustration, and developed a new algorithm. In fact, all
existing test suite minimization techniques involving
random selection can be integrated into this framework.
For example, the GRE heuristic can also be ameliorated
by considering the secondary requirement.

In the experimental study, the Siemens suite
programs are used to judge the performance of the
proposed approach. The experimental results show that it
can significantly improve the fault detection effectiveness
while the increments on the sizes of test suites are
extremely minor. As a result, the average number of
faults revealed by each test case is raised. This may mean
the proposed approach can refine the selection of test
cases. Furthermore, this approach can also greatly shorten
the time required to finish the reduction. Finally, future
research will continue to assess the effectiveness of
incorporating other test suite reduction approaches into
the proposed framework.

ACKNOWLEDGMENT

This work was supported by the National Science
Council, Taiwan, under Grant NSC 96-2221-E-007-079.

REFERENCES

[1] M.J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology
for Controlling the Size of a Test Suite,” ACM
Transactions on Software Engineering and Methodology,
vol. 2, no. 3, pp. 270-285, Jul. 1993.

V. Chvatal, “A Greedy Heuristic for the Set-Covering
Problem,” Math. Operations Research, vol. 4, no. 3, pp.
233-235, Aug. 1979.

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur,
“Effect of Test Set Minimization on Fault Detection
Effectiveness,” Software—Practice and Experience, vol. 28
no. 4, pp. 347-369, Apr. 1998.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suites,” Proceedings of the

[2]

E]]

4]

1233

14th International Conference on Software Maintenance,

pp. 34-43, Nov. 1998, Bethesda, MD, USA.

D. Jeffrey and N. Gupta, “Improving Fault Detection

Capability by Selectively Retaining Test Cases during Test

Suite Reduction,” I[EEE Transactions on Software

Engineering, vol. 33, no. 2, pp. 108-123, Feb. 2007

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,

“Experiments on the Effectiveness of Dataflow- and

Controlflow-Based Test Adequacy Criteria,” Proceedings

of the 16th International Conference on Software

Engineering, pp. 191-200, May 1994, Sorrento, Italy.

M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness.

Freeman and Company, 1979.

T. Y. Chen and M. F. Lau, “A New Heuristic for Test Suite

Reduction,” Information and Software Technology, vol. 40,

no. 5-6, pp. 347-354, Jul. 1998.

S. Tallam and N. Gupta, “A Concept Analysis Inspired

Greedy Algorithm for Test Suite Minimization,”

Proceedings of the 6th Workshop Program Analysis for

Software Tools and Engineering, pp. 35-42, Sep. 2005,

Lisbon, Portugal.

[10]J. A. Jones and M. J. Harrold, “Test-Suite Reduction and
Prioritization for Modified Condition/Decision Coverage,”
IEEE Transactions on Software Engineering, vol. 29, no. 3,
pp. 195-209, Mar. 2003.

[11]J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-Criteria
Models for All-Uses Test Suite Reduction,” Proceedings of
the 26th International Conference on Software Engineering,
pp. 106-115, May 2004, Scotland, UK.

[12] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing Test Cases for Regression Testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp.
929-948, Oct. 2001

[13] A. Srivastava and J. Thiagrajan, “Effectively Prioritizing
Tests in Development Environment,” Proceedings of the
International Symposium on Software Testing and Analysis,
pp. 97-106, Jul. 2002, Rome, Italy.

[14]J. R. Horgan and S. A. London, “ATAC: A Data Flow
Coverage Testing Tool for C,” Proceedings of the 2nd
Symposium on Assessment of Quality Software
Development Tools, pp. 2-10, May 1992, LA, USA.

[15]D. Leon and A. Podgurski, “A Comparison of Coverage-
Based and Distribution-Based Techniques for Filtering and
Prioritizing Test Cases,” Proceedings of the International
Symposium on Software Reliability Engineering, pp. 442-
456, Nov. 2003, Denver, Colorado, USA.

[16] P. Frankl and S. Weiss, “An Experimental Comparison of
the Effectiveness of Branch Testing and Data Flow
Testing,” IEEE Transactions on Software Engineering, vol.
19, no. 8, pp. 774-787, Aug. 1993.

[17]1P. G. Frankl and O. Iakounenko, “Further Empirical
Studies of Test Effectiveness,” Proceedings of the 6th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 153-162, Nov. 1998, Orlando,
FL, USA.

[18] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock,
“Integrating Customized Test Requirements with
Traditional Requirements in Web Application Testing,”
Proceedings of the Workshop on Testing, Analysis, and
Verification of Web Services and Applications, pp. 23-32,
Jul. 2006, Portland, Maine, USA.

[19] “The Software-artifact Infrastructure Repository,”
Available: http://sir.unl.edu/portal/, 15 Feb., 2008

[5]

(6]

7

(8]

[91

