
Test Transfer Across Mobile Apps 
Through Semantic Mapping

Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek

School of Information and Computer Sciences

University of California, Irvine



Mobile Apps: Part of Our Lives

2



Mobile Apps: Part of Our Lives

3

• Banking
• Transportation
• Health
• and more…

• Need to be well tested



Automated Test Input Generation Techniques

4



Automated Test Input Generation Techniques

• Not widely adopted in practice 
• Majority of the mobile app’s testing is still performed manually

Reference:

• M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran and D. Poshyvanyk, “How do Developers Test Android 
Applications,” ICSME’17

• P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann and D. Lo, “Understanding the Test Automation Culture 
of App Developers,” ICST’15

• M. E. Joorabchi, A. Mesbah and P. Kruchten, “Real Challenges in Mobile App Development,” ESEM’13

5



Limitations of Current Techniques

1. Lack of context-aware text inputs
• e.g., city names for navigation apps; correct URLs for browser apps

• Exploration may get stuck at the very beginning

2. Failing to generate expressive tests
• Try to maximize code coverage or # of crashes

• Tests are feature-irrelevant, not reflecting common usage scenarios

3. Absence of test oracles
• Only focus on generating input events alone

• Unable to identify failures other than crashes

6



CRAFTDROID: Test Transfer Across Mobile Apps

• Reuse existing tests, including oracles, for one app to test other 
similar apps

7

Source App

Source Test Target Test CRAFTDROID

Target App



CRAFTDROID: Test Transfer Across Mobile Apps

• Reuse existing tests, including oracles, for one app to test other 
similar apps

8

Source App

Source Test Target Test CRAFTDROID

Target App

1. Use context-aware inputs
2. Meaningful and feature-relevant
3. Contain suitable oracles



Insights Behind CRAFTDROID (1)

• Apps within the same category share similar functionalities
• Email clients, web browsers, to-do lists, banking apps…

• Exist across differ types of apps: registration, authentication, …

9

Reference:
• F. Behrang and A. Orso, "Test migration for efficient large-scale assessment of mobile app coding 

assignments," ISSTA 2018
• A. Rau, J. Hotzkow, and A. Zeller, "Transferring tests across web applications," ICWE 2018
• L. Mariani, M. Pezz`e, and D. Zuddas, "Augusto: Exploiting popular functionalities for the generation of 

semantic gui tests with oracles," ICSE 2018



Insights Behind CRAFTDROID (2)

• GUI for the same functionality are usually semantically similar, even 
if they belong to different apps with different looks and styles

• Semantic similarity: the conceptual relation between GUI elements 
and their textual properties, e.g., text, labels, variable names

10

Reference:
• F. Behrang and A. Orso, "Test migration for efficient large-scale assessment of mobile app coding 

assignments," ISSTA 2018
• A. Rau, J. Hotzkow, and A. Zeller, "Transferring tests across web applications," ICWE 2018
• L. Mariani, M. Pezz`e, and D. Zuddas, "Augusto: Exploiting popular functionalities for the generation of 

semantic gui tests with oracles," ICSE 2018



CRAFTDROID: Test Transfer Across Mobile Apps

■ Introduction

■ Challenges and Motivating Example

■ Overview of CRAFTDROID

■ Evaluation

■ Conclusion

11



Source App: Rainbow Shops

12



Source App: Rainbow Shops

13

Source Test 

1. Click “Join”

2. Input ”Email”

3. Input “Password”

4. Input “First Name”

5. Input “Last Name”

6. Click “Create Account”

7. Assert “Sealbot”



Target App: Yelp

14



Target App: Yelp

15

Target Test

1. Click “Me”

2. Click “Sign Up”

3. Click “Sign up with Email”

4. Input ”Email”

5. Input “Password”

6. Click “Next”

7. Input “First Name”

8. Input “Last Name”

9. Click “Next”

10. Click “Sign Up”

11. Assert “Sealbot”



16

Source Test Target Test

1. Click “Me”

1. Click “Join” 2. Click “Sign Up”

3. Click “Sign up with Email”

2. Input ”Email” 4. Input ”Email”

3. Input “Password” 5. Input “Password”

6. Click “Next”

4. Input “First Name” 7. Input “First Name”

5. Input “Last Name” 8. Input “Last Name”

9. Click “Next”

6. Click “Create Account” 10. Click “Sign Up”

7. Assert “Sealbot” 11. Assert “Sealbot”



17

Challenge 1: The mapping of GUI widgets
(esp. the syntactically different but semantically similar ones)

Source Test Target Test

1. Click “Me”

1. Click “Join” 2. Click “Sign Up”

3. Click “Sign up with Email”

2. Input ”Email” 4. Input ”Email”

3. Input “Password” 5. Input “Password”

6. Click “Next”

4. Input “First Name” 7. Input “First Name”

5. Input “Last Name” 8. Input “Last Name”

9. Click “Next”

6. Click “Create Account” 10. Click “Sign Up”

7. Assert “Sealbot” 11. Assert “Sealbot”



18

Challenge 2: The mapping of test steps between two apps is 
not one-to-one

Source Test Target Test

1. Click “Me”

1. Click “Join” 2. Click “Sign Up”

3. Click “Sign up with Email”

2. Input ”Email” 4. Input ”Email”

3. Input “Password” 5. Input “Password”

6. Click “Next”

4. Input “First Name” 7. Input “First Name”

5. Input “Last Name” 8. Input “Last Name”

9. Click “Next”

6. Click “Create Account” 10. Click “Sign Up”

7. Assert “Sealbot” 11. Assert “Sealbot”



■ Introduction

■ Challenges and Motivating Example

■ Overview of CRAFTDROID

■ Evaluation

■ Conclusion

19

CRAFTDROID: Test Transfer Across Mobile Apps



20

Source App

Source Test 

Test
Augmentation

Target App

Augmented
Source Test 

Target Test 

Test
Generation

CRAFTDROID

UI Transition 
Graph

Model
Extraction



Transfer Source Test to Target App

Iterate over every GUI or oracle event in the source test, trying to:

(1) Map the source widget to a target widget

(2) Identify the events leading to the target widget (if any)

(3) Determine the action for the mapped target widget based on the 
source action

21



22

1. Find the target widget which is most similar to the source widget

Source App

(“Join”, “Click”)



23

Word2Vec
1. Find the target widget which is most similar to the source widget

Target widget 𝑤𝑡: “Sign Up”

Source App Target App

(“Join”, “Click”)



Word2Vec

• A neural network that is trained to reconstruct linguistic contexts of 
words

• Use a pre-trained model to get word embeddings (real-value vectors) 
for words

• Words more semantically related would be closer in terms of their 
cosine similarity

24

𝑆𝑖𝑚 "𝐶𝑟𝑒𝑎𝑡𝑒", "𝑆𝑖𝑔𝑛"

= cosine 0.204, 0.004, 0.073, 0.014,… , 0.012, 0.148, 0.102, 0.011,…

= 0.405



Computing Similarity Between Widgets

• Retrieve extra textual information from widgets
• A widget has a set of word lists from multiple information sources

25

{
"class": "Button", 
"resource-id": "button_sign_up", 
"text": "Join", 
"content-desc": "", 
"sibling_text": "Log In", 
"activity": "ProfileActivity",
…

}

{
"class": ["button"], 
"resource-id": ["button", "sign", "up"]
"text": ["join"], 
"content-desc": "", 
"sibling_text": ["log", "in"], 
"activity": ["profile", "activity“],
…

}



Computing Similarity Between Widgets

• Retrieve extra textual information from widgets
• A widget has a set of word lists from multiple information sources

• Compute the textual similarity score for each source by leveraging 
Word2Vec

• Calculate a weighted sum of the scores of multiple sources

Challenge 1: The mapping of semantically similar GUI widgets

26



27

1. Find the target widget which is most similar to the source widget
2. Find the events leading to the target widget (if any)

Source App

(“Join”, “Click”)

Target App



28

1. Find the target widget which is most similar to the source widget
2. Find the events leading to the target widget (if any)

Target widget 𝑤𝑡: “Sign Up”

𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 to 𝑤𝑡: 
(“Me”, “Click”)

Source App

(“Join”, “Click”)

UI Transition
Graph

Target App



UI Transition Graph (UITG) for Target App

• Nodes: Activities

• Transitions: GUI events (inter- and intra-activity transitions)

• Widgets attached to Activities

• Parse the Manifest and Resource files

• Perform static analysis on the source code and look for specific program 
constructs and methods
• e.g., setContentView(), 

findViewById(), 
setOnClickListener(),
…

29



UI Transition Graph

30

(“Me”, “click”)

(“Sign Up”, “click”)

(“Sign Up”, “click”)

Home
UserProfile
LoggedOut

Create
Account

UserProfile

≈



UI Transition Graph

31

Challenge 2: Non one-to-one mapping of test steps



32

(“Join”, “Click”)
(“Me”, “Click”)
(“Sign Up”, “Click”)

1. Find the target widget which is most similar to the source widget
2. Find the events leading to the target widget (if any)
3. Determine the action for the mapped target widget

Target widget 𝑤𝑡: “Sign Up”

𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝐸𝑣𝑒𝑛𝑡𝑠 to 𝑤𝑡: 
(“Me”, “Click”)

Action for 𝑤𝑡: “Click”
Target event: 

(“Sign Up”, “Click”)

Source App Target App



33

Also works for oracle transfer 
e.g., existence check of GUI widget

(“First Name”, “isVisible”)



■ Introduction

■ Challenges and Motivating Example

■ Overview of CRAFTDROID

■ Evaluation

■ Conclusion

34

CRAFTDROID: Test Transfer Across Mobile Apps



Evaluation

• 25 real-world subject apps
• 5 categories

• 5 apps for each category

35



Test cases for the identified functionalities

Category Functionality
#Test 
Cases

Avg#
Total Events

Avg#
Oracle Events

a1-Browser
b11-Access website by URL 5 3.4 1
b12-Back button 5 7.4 3

a2-To Do List
b21-Add task 5 4 1
b22-Remove task 5 6.8 2

a3-Shopping
b31-Registration 5 14.2 5
b32-Login with valid credentials 5 9 4

a4-Mail Client
b41-Search email by keywords 5 5 3
b42-Send email with valid data 5 8 3

a5-Tip Calculator
b51-Calculate total bill with tip 5 3.8 1
b52-Split bill 5 4.8 1

Total 50 6.6 2.4

36



Attempted transfers

• For each test case validating a functionality of an app, transfer it to 
the other four apps under the same category

• For each functionality
• 5 (test cases) * 4 (transfers) = 20 attempted transfers

• 10 functionalities: 10 * 20 = 200 attempted transfers

37



Evaluation Metrics

For each attempted transfer, check: 

• Whether the transfer is successful (manually examined)

• Effectiveness of the widget mappings
• Precision: how many generated target events are correct

• Recall: how many source events are correctly transferred

38



39

Category Functionality
GUI Event Oracle Event #Successful

TransferPrecision Recall Precision Recall

Browser
b11 79% 100% 100% 100% 20/20 (100%)
b12 85% 100% 100% 100% 20/20 (100%)

To Do List
b21 78% 100% 85% 100% 17/20 (85%)
b22 69% 100% 85% 80% 11/20 (55%)

Shopping
b31 44% 90% 34% 67% 8/20 (40%)
b32 53% 82% 56% 61% 10/20 (50%)

Mail Client
b41 100% 100% 100% 100% 20/20 (100%)
b42 85% 80% 89% 89% 14/20 (70%)

Tip 
Calculator

b51 82% 100% 100% 80% 16/20 (80%)
b52 80% 100% 100% 65% 13/20 (65%)

Total 70% 94% 79% 85% 149/200 (74.5%)

Good successful transfer (75%), good precision (73%), excellent recall (90%)



Factors Impacting Effectiveness 

• Length of test case (i.e., number of total events)

Pearson correlation coefficient between avg. test length and effectiveness

• Strongly negative correlations

GUI event Oracle event #Successful
TransferPrecision Recall Precision Recall

Avg. Test 
length

-0.74 -0.60 -0.87 -0.51 -0.71

40



Factors Impacting Effectiveness 

• Complexity of app, in terms of interface and functionality

• Apps with (de-facto) design guidelines, e.g., Browser apps
• Simple main screen with a search bar; fewer actionable GUI widgets

• Apps without uniform design guidelines, e.g., Shopping apps
• Number of functionalities on a screen

• Number of required steps for a functionality

• Pop-up coupons, shopping preference configurations, …

41



Future Work: 
Precise App Categorization
• Test transfer only makes sense when applied to apps sharing similar 

features

• Default categories (e.g., 33 on Google Play) are too coarse grained
• Insufficient information about specific features contained in an app

• Fine-grained and feature-based app categorization before test 
transfer
• Text clustering (i.e., unsupervised document classification)

• Code clone detection

• Repacked mobile apps detection

42



Future Work:
Better Semantic Analysis for Widget Mapping
• Non-native UI

• Image-based widgets without text: computer vision, image classification 

• Dynamically-generated widgets: dynamic analysis

• Integrate other ways to compute similarity
• Analyze the corresponding event-handler logic for widgets

43



Conclusion

• CRAFTDROID, a framework for transferring tests across mobile apps
• Through semantic mapping of actionable GUI widgets

• Evaluation on 25 real-world apps from 5 categories
• 75% success rate; 73% precision and 90% recall on widget mapping

• Practical test transfer is feasible but there is a long way to go
• e.g., complex apps, long tests, precise app categorization, …

44

Thank you!


